Что можно сделать на 3D-принтере? Виды, назначение и возможности 3D-принтеров

Как работает строительный 3Д-принтер

Так называемая аддитивная технология строительства (от англ. Add- добавлять, наращивать) практически не имеет ограничений в использовании(кроме как законами физики). На 3D-принтере можно печатать как отдельные элементы конструкции: стены, перекрытия, другие элементы, так и цельные дома.

По сути, процесс работ повторяет обычное строительство. Сначала создается проект, затем возводится фундамент, в этом случае, чаще всего, он кирпичный. Процесс компьютерного моделирования в строительстве подобных сооружений – важнейшая часть. Ведь все этапы возведения дома возложены на искусственный интеллект.

Современные 3D-принтеры могут учитывать конфигурацию и положение окон, а также применять архитектурные приемы, используя заранее созданные макеты

По сути, основная часть принтера, кроме электронной начинки, – это стрела экструдера и управляющие ею эксцентрики, которые и двигаются по платформе в заданном радиусе или по прямой. Собственно, монтаж базы, или основания принтера как раз зависит от параметров здания и его конфигурации. Дома могут иметь разную форму и габариты, соответственно и формат машин, создающих их, совершенно разный.

Важное дополнение. В строительном принтере нет необходимости использовать нагревающий элемент

Бетонная смесь подается напрямую из бетономешалки, с помощью специальных насосных систем. Такие машины позволяют идеально ровно выполнить кладку, а в некоторых случаях оставить отверстия под арматурные элементы.

3D-принтер позволяет провести укладку стен, перекрытий, инженерных отверстий, в том числе под оконные проёмы

Нестандартные вещи, которые были изготовлены при помощи устройства объемной печати

Стоит ли упоминать, что первый экспериментальный образец робота-рыбы полностью сделан на 3D принтере? Начиная от плавников и заканчивая покрытием всего скелета. Данный образец проходил испытания в одном из исследовательских центров Великобритании, где занимаются наблюдением за животными. Но это далеко не все необычные предметы, созданные на 3D принтере.

  1. Точная копия костей тиранозавра, выставленная в одном из европейских музеев, выглядит весьма внушительно, а благодаря пористой структуре материала, ее не отличить от оригинала. При прикосновении возникает эффект «настоящей кости», и, как показал эксперимент, практически ни один испытуемый не смог отличить, где подлинник, а где дубликат.
  2. Впрочем, это далеко не самое оригинальное применение высоких технологий. Так, например, один из американских ветеранов, лишившийся части лица во время боевых действий, смог примерить на себе протез, который идеально подходит под его размеры головы.
  3. Так же памятен случай, когда раненой птице часть крыла, пострадавшую при нападении хищника, успешно напечатали на 3D принтере, после чего она снова смогла летать.
  4. Команда по связям с общественностью университета города Принстон заявила, что ученым удалось напечатать на принтере ухо, способное распознавать различные звуки, причем, по заверениям разработчиков, с этой задачей оно справляется не хуже настоящего.
  5. Несколько лет назад двое дизайнеров решили, что шить одежду — это слишком скучно и долго. Они представили миру первый купальный костюм, полностью напечатанный на устройстве объемной печати. Модель получилась весьма изящной, но создатели в своем выступлении сделали упор на то, что в будущем вся одежда должна сканироваться и печататься на каждого отдельного человека, а не по заданным лекалам.

  6. Если в случае, когда протез лицевой части у ветерана военных действий имел небольшой размер, то протез черепной коробки заменил в общей сложности 75% костной ткани. На данный момент этот случай в медицине является уникальным. Операция прошла в 2013 году, пациент до сих пор жив. Про неоднократные успехи в печати и последующем протезировании нижней челюсти рассказано уже много, достаточно лишь упомянуть, что подобная практика в наши дни стала уже привычной и не вызывает былого удивления.
  7. В том же 2013 году на 3D принтере напечатали первый в мире пистолет.

  8. Производители музыкальных инструментов не желают отставать от современных тенденций. Так, Олфан Дигель, известный в мире музыкальных инструментов, выпустил первую коллекцию бас-гитар, полностью напечатанных на станке. Их стоимость остается довольно высокой, но за эксклюзив приходилось доплачивать во все времена.
  9. Автомобиль. Да-да, вы не ослышались. Частный пользователь из Новой Зеландии в течение года распечатывал у себя дома самый настоящий Aston Martin DB4, блок за блоком. Сегодня работа практически завершена. Это лишнее подтверждение тому, что при помощи станка можно сделать все что угодно, причем в домашних условиях.

Современный уровень развития технологий не позволяет делать точных прогнозов, куда шагнет массовый рынок уже завтра, в нем можно лишь угадывать определенные склонности и тенденции. Одно можно сказать с уверенностью: 3D принтеры будут набирать популярность и все более активно входить в повседневную жизнь. Использовать их удобно: они экономят время и место, необходимое для организации бизнеса, являясь более компактным устройством. Сфера их применения практически безгранична, ведь нас окружает мир предметов, каждый из которых может быть напечатан (хотя бы частично) на принтере.

Прошлое: краткая история 3D-печати

История 3D-печати начинается в середине ХХ века, в 1950-е годы, когда американец Чарльз Халл попробовал воплотить в жизнь первую аддитивную технологию — стереолитографию.

Ближайшие родственники 3D-принтеров появились в начале 80-х годов ХХ века в Японии благодаря работе доктора Хидео Кодамы, который разработал устройство для быстрой послойной печати прототипов физических объектов.

В 1986 году Чарльз Халл получил, наконец, патент на своё изобретение и основал компанию «3D System Corporation», которая сегодня является лидером 3D-печати.

В 1988 году было запущено серийное производство стереолитографических (SLT) принтеров, которые создавали объекты по цифровым заготовкам. Материалом служило жидкое вещество на основе акрила, которое под действием лазерных лучей превращалось в пластик.

К началу девяностых 3D-модели создавались новым поколением принтеров по технологии лазерного спекания. Тогда же появился термин «3D-печать». Если раньше изделие «выращивалось» из жидкого акрила, то к тому времени оно уже изготавливалось из порошка под воздействием лазера.

В начале 2000-х годов произошла самая настоящая революция 3D-печати: рынок раскололся на два направления – высокотехнологичные дорогостоящие системы и доступные широкой категории потребителей устройства. И те, и другие стремительно развиваются, активно внедряясь во все сферы жизни человека.

Виды 3Д-принтеров для строительства дома

Как мы уже замечали выше, тип 3D-принтера напрямую зависит от типа и модификации здания. Которое он возводит. От этого зависит и размер самого принтера, объем бетономешалки, а также сопла, который подает строительную смесь.

Вариации конструкций строительных 3D-принтеров

Впервые дома по данной технологии стали массово возводить в Шанхае. Одна из первых 3D-машин, поразившей своими размахами и размером стал принтер WinSun. Длина рабочей зоны составляла 150 метров, а ширина 10. Такой принтер способен за несколько дней напечатать здание высотой 6 метров.

Дом, напечатанный чудо-принтером

Интересно, что в качестве технологической изюминки китайские инженеры использовали специальное стекловолокно, которое, с одной стороны, удешевляло строительные работы, а с другой – делало бетонную смесь менее теплопроводной. Тестовые образцы позволили компании сэкономить половину бюджета на возведение дома по новой технологии.

Европейские же инженеры, к примеру, голландские предпочитают печатать не собственно дома, а строительные материалы, с помощью которых эти дома можно возводить, считая (в чем-то справедливо), что более качественно работа будет сделана всё-таки человеческими руками и головой.

Достоинства и недостатки применения 3D-принтера в строительстве

Главным плюсом, о котором говорили все разработчики, называется то, что процесс возведения жилья удешевляется, а скорость возведения объектов увеличивается. Однако, до сих пор непонятно, будет ли использоваться человеческий труд, хотя бы в качестве дополняющего элемента.

Кроме того, универсальность печати и возможности моделирования смогут в будущем позволить возводить дома на участках со сложным рельефом. Технические решения уже в этом направлении есть

С помощью точного расчета можно создавать идеальные опорные и несущие конструкции под определённую местность, идеально точно следовать метражу помещения по проекту, а главное – создать идеально ровные стены. Кроме того, с помощью 3D-печати можно создать идеально ровный фундамент, причем достаточно быстро.

Среди главных, но существенных минусов – это большие энергозатраты и необходимость обслуживания оборудования. Кроме того, каким бы ни было совершенным оборудование, полный цикл работ оно охватить не сможет.

Строительная площадка под строительство дома на 3D-принтере

Поддерживающие материалы

Это вторые по важности расходные элементы после материалов для печати. Они нужны для создания опорных конструкций для сложнодетализированных моделей, в которых предусмотрен промежуток между слоями

Есть несколько видов поддерживающих материалов: — Легкоплавкие. Как правило, это вещества из воска или геля. Их можно легко удалять из объекта после создания, а также использовать повторно. — Вымываемые или растворимые. Это пластиковые или гелеобразные субстанции, которые растворяются в воде или химическом составе. Они хороши для создания сложных изделий с множеством внутренних пустот, а готовая модель после очистки от «поддержки» не нуждается в обработке. — Удаляемые механически. Как правило, изготавливаются из тех же веществ, что и материалы для печати, только в менее концентрированном виде. Они дешевле остальных видов «поддержки», но менее удобны. После модель необходимо отшлифовывать.

Настоящее: сферы применения 3D-печати

Медицина

Одно из самых быстроразвивающихся направлений 3D-печати – медицина. В 2011 году произошел триумф в регенеративной медицине: принтер, заправленный биогелем со стволовыми клетками, «напечатал» за 3 часа человеческую почку. Хотя до трансплантации органов ещё далеко, ученые уже сейчас разрабатывают технологии для пересадки выращенных с помощью 3D-печати кровеносных сосудов, органов брюшной полости, кожи.

Сегодня во всём мире, в том числе и в  России, успешно имплантируются напечатанные на 3D-принтере элементы человеческого скелета – кости, суставы, зубы. В НИИ травматологии и ортопедии Санкт-Петербурга благополучно применяют эндопротезирование утраченных конечностей и суставов, а в Новосибирском НИИ им. Н.Я. Цивьяна проводят  операции по замещению черепных костей с помощью аддитивных технологий, возвращая к полноценной жизни детей и взрослых.

Строительство

Строительство с помощью 3D-печати составляет серьёзную конкуренцию традиционным подходам. Объединенные Арабские Эмираты, Тайланд, Китай и Россия уже сегодня используют современные мобильные принтеры для печати домов прямо на месте их расположения.

Метод печати тот же, что и в других сферах применения, – послойное экструдирование (производство путем продавливания вязкого материала через формующие отверстия). В качестве материала используются цемент, строительный мусор, бывшие в употреблении стройматериалы, стекловолокно и др. Технология работает по принципу строительного крана, возводящего стены из смеси бетона и связующих материалов.

Если говорить о рациональности данного метода строительства, то стоимость материалов и время работы в разы ниже, а отсутствие прорабов и бригад сокращает финансовые затраты на человеческий труд. Более того, данная технология обеспечивает жильем людей с крайне низким уровнем дохода.

Трудно переоценить перспективы быстрого возведения экономичного жилья оригинальных архитектурных форм как в перенаселенных городах, так и в труднодоступных уголках планеты.

Быт

Принтеры с технологией 3D-печати постепенно осваивают сферы производства продуктов питания, одежды, обуви, уникальных сувениров, игрушек, мебели – всего того, что используют люди в повседневной жизни.

Для печати бытовой продукции широкого спектра человеку понадобится лишь принтер и различные материалы к нему.

Пищевой 3D-принтер заправляется картриджами с ингредиентами и готовит самые изысканные многокомпонентные блюда по рецептам, хранящимся на карте памяти.

Одежда и обувь, напечатанные на 3D-принтере, уже демонстрировались на показах мод. Совсем скоро можно будет покупать выкройки и печатать себе платья и джинсы, не выходя из дома. К готовому изделию можно напечатать уникальные декоративные дополнения, чтобы придать индивидуальность фабричному продукту.

Функциональность печатных изделий

Она зависит от нескольких факторов:

  • качества печати;
  • используемого материала и др.

Домашние варианты подходят, чтобы печатать шестеренки, например, для самодельных роботов или корпуса для электронных девайсов. Опытным любителям под силу печать уникальных изделий из современного композитного материала с добавками углеволокна. «Напечатать» игрушки, ручки для посуды и прочее – проблем не составляет. Но, с помощью принтеров можно отремонтировать вещи раритетные, с производства снятые давно.

В России выпуск собственных 3D-принтеров тоже отлажен. Изделия, с помощью их изготовленные, не хуже по качественным характеристикам зарубежным аналогам. Кроме этого, всегда есть, куда обратиться, если потребуется сервисное обслуживание.

Есть еще одна разновидность машин, которые работают с:

  • смолами жидкими, для отверждения которых используют свет;
  • порошками металлическими и пластиковыми, для спекания которых применяют лазеры;
  • изготавливающие из обычной бумаги трехмерные предметы.

Будущее: перспективы 3D-печати

Технология 3D-печати в скором будущем позволит создавать элементы для строительства исследовательских баз на Луне и Марсе. NASA уже успешно испытала распечатанные на 3D-принтере титановые форсунки для ракетных двигателей.

Перспективы освоения ближайших планет диктуют сокращение издержек на транспортировку груза и материалов. Так, единственным вариантом возможного освоения планет эксперты NASA назвали использование 3D-печати в космосе. Печатать посадочные площадки, монолитные строения и дороги на Луне можно из местного грунта, а на Марсе  — из базальта и реголита. Более того, в приполярных районах Марса вода и низкие температуры помогут построить обитаемые «марсианские иглу» — многослойные ледяные укрытия от радиации и ветров.

Также в будущем на 3D-принтере можно будет воспроизвести ещё один принтер, запчасти и картриджи к нему. Самовоспроизводящиеся принтеры будут новым витком и в то же время логическим завершением 3D-революции.

Дизайн упаковки

Трёхмерные принтеры позволяют изготавливать пробные макеты упаковки, флаконов и бутылок оригинальной формы. Прототипы могут быть цветными, с включением всех элементов дизайна, в т.ч. этикеток, штрих-кодов, фирменных знаков. Готовые модели упаковки могут быть продемонстрированы заказчику перед запуском в массовое производство. Преимущество 3D прототипов налицо: заказчик может подержать упаковку в руках, оценить её фактуру, текстуру, цветовое оформление и некоторые другие характеристики.

Прототипы бутылок, напечатанные 3D принтером

Для изготовления пластиковых упаковок в настоящее время используют следующие 3D принтеры: Dimension uPrint, uPrint+, Elite, SST 1200ES; Fortus 400mc и 900mc. Для изготовления полупрозрачной и детализированной упаковки используются принтеры: Objet 24 и 30; Eden 250, 260V, 350, 500V; Objet 260 Connex, Connex 350 и 500. Для печати цветной упаковки лучше всего подойдут принтеры ZPrinter 250, 450, 650 и 850.

Быстрое пропитывание

Независимо от нюансов, основано изготовление с помощью этих устройств на быстром пропитывании. Данная концепция предполагает быстрое формирование опытных образцов для демонстрации возможностей, которые дает будущий продукт.

Технология предполагает не удаление материалов, как это бывает при фрезеровании, ковке, сверлении и т.д., а послойное наращивание, т.е. постепенное увеличение массы.

Развитие трехмерной печати в настоящее время идет в нескольких направлениях:

  • STL – стереолитография;
  • FDM – использование термопластов;
  • SLS – спекание лазером.

Второй метод наиболее широко применяем.

Способствую этому такие факторы:

  • применение недорогих пластиков;
  • техника, простая в эксплуатации.

Работа с терпомпластами, предусмотренная этой технологией, включает использование полилактида, получают который из кукурузы и тростника сахарного. Поэтому, его основным преимуществом считается экологическая чистота.

История создания

Хоть в широких массах 3D-технологии стали известны лишь в последние пару лет, первые модели подобных принтеров появились много лет назад. В 1934 году компания Charles Hull первой выпустила 3D-принтер, который печатал объект с помощью использования цифровых данных. В 1988 году в продажу поступила более компактная модель для домашнего применения, которая получила название SLA-250.

Технологии не стоят на месте. Если первые принтеры печатали довольно неаккуратные модели, то их «потомки» становились все более точными. В 1993 году компания Solidscape стала выпускать принтеры на струйной основе, которые были нацелены на производство небольших деталей с идеально ровной поверхностью.

Но все же спрос стимулирует производство, поэтому наибольший скачок в развитии 3D-технологий был совершен именно в 21-м веке. В 2005 году появилось первое устройство, которое было способно печатать цветные объекты.

Что можно сделать на 3D-принтере? В настоящее время трехмерная печать открывает неведомые доселе возможности: на 3D-устройствах можно напечатать практически любую вещь – от кровеносного сосуда до габаритной мебели или оружия. Промышленные 3D-принтеры могут изготавливать целые самолеты и здания, а более компактные домашние модели часто используют для производства тестовых моделей и необходимых бытовых предметов.

Области применения 3D-принтера

Технология 3D-печати открыла огромные возможности для производства практически во всех наиболее важных сферах человеческой жизни. Что можно сделать на 3D-принтерах, и где они применяются?

  • Производство оружия. Думаете, пистолет из пластмассы не будет работать? Еще как будет! Это доказал гражданин США, пронесший в аэропорт полноценный огнестрельный пистолет из пластмассы, который нельзя было засечь на металлодетекторах. А в 2012 году компания Defense Distributed представила оружие, которое может распечатать любой человек у себя дома на 3D-принтере, имея соответствующую модель. После этого в США был принят закон о запрете использования трехмерных технологий в изготовлении оружия.
  • Построить дом теперь стало еще проще: 3D-технологии пришли и в сферу строительства. Первый дом был «распечатан» в 2014 году, а целое здание, произведенное с помощью 3D-печати, было представлено широкой общественности в 2016 году.
  • В производстве трехмерная печать позволяет значительно ускорить процесс изготовления деталей.
  • Тестовые 3D-принтеры на данный момент способны воспроизводить человеческие органы. Для этого на специальную биологическую основу наносят клетки нужного типа. Но эта технология пока находится на стадии разработки.
  • Зато в области изготовления протезов 3D-принтеры уже активно используются. С их помощью производят различные импланты: частицы костей и хрящевых тканей.
  • Трехмерные принтеры участвуют и в создании дорогостоящей техники: например, беспилотный самолет Polecat был практически полностью изготовлен с помощью 3D-технологий.

Как можно заметить, ответ на вопрос о том, что можно сделать на 3D-принтере, довольно обширен. Скорее всего, эта область и дальше будет активно развиваться, и принесет немало плюсов человеческой цивилизации. Возможности 3D-принтера практически безграничны.

Сам 3D-принтер

Конечно же, для работы с 3D-принтером требуется сам 3D-принтер, иначе ничего не получится. Ладно, шутки в сторону — давай разберемся в классификации этих прекрасных изобретений. Есть промышленные, профессиональные и персональные (домашние принтеры). Они отличаются друг от друга набором функций, количеством поддерживаемых способов печати и, само собой, ценой.

Профессиональные, как правило, используются компаниями, которые заняты в сфере исследований или решают локальные бизнес-задачи. Они подходят для создания технологичных прототипов и макетов. Цена таких начинается от 30 тысяч долларов.

Промышленные — для крупных производственных объектов, где требуются детализированные и сверхпрочные конструкции, обычно из металла. Также промышленные принтеры используются для спекания полиамидных порошков и фотополимерной печати по SLA-технологии. Стоят подобные экземпляры несколько сотен тысяч вечнозеленой валюты.

Персональные — это наиболее распространенные принтеры для частных владельцев, школ или небольших компаний. Приобрести такой можно от 30 тысяч. Рублей.

Купить 3D-принтер и все необходимые комплектующие для работы с ним ты можешь в магазине 3DVision. Эта компания специализируется на 3D-печати с 2012 года. В каталоге магазина тебя ждет большой выбор материалов и технологий изготовления моделей по привлекательным ценам. Специалисты 3DVision также готовы проконсультировать клиентов по всем интересующим вопросам.

Образование

Использование технологии 3D печати в образовании позволяет получить наглядные пособия, которые отлично подходят для классных комнат любых образовательных учреждений, начиная от детских садов и заканчивая вузами.

Современные 3D принтеры отлично подходят для классных комнат, поскольку имеют повышенную надёжность, не выделяют во время печати вредных для здоровья продуктов, не предъявляют особых требований к утилизации, не содержат режущих и бритвенных материалов, не имеют лазеров.

Наглядные пособия, напечатанные 3D принтером для учреждений среднего профессионального образования

Предполагается, что оснащение образовательных учреждений конструкторских или дизайнерских специальностей 3D принтерами поспособствует повышению эффективности образовательного процесса и быстрому усвоению знаний учащимися и студентами.

Стереолитография

Стереолитография использует свет для “выращивания” объектов в емкости с фотополимерной смолой. Как и в прочих технологиях 3D-печати, изделие образуется слой за слоем, здесь — при отверждении жидкого фотополимера светом.

От FDM стереолитография отличается более монолитными принтами, даже с одинаковой заданной толщиной слоя.

На фото: принты FDM и SLA, слой обеих моделей — 0,1 мм.

Дело в разнице в технологиях — фотополимерная засветка дает более аккуратные слои, чем расплавленный филамент выдавливаемый из сопла FDM-принтера.

SLA и DLP — две разновидности стереолитографии. SLA — лазерная стереолитография, DLP — цифровая проекция. Различие между ними в том, что в SLA источником света служит лазер, а в DLP — проектор.

Независимо от технических особенностей, принцип работы устройств SLA и DLP схож. Для запуска печати необходимо опустить специальную платформу построения в емкость с жидкой фотополимерной смолой.

Платформа останавливается на высоте одного слоя от дна емкости. Происходит засветка источником света принтера. Жидкий полимер, под воздействием света, становится твердым и прилипает к платформе построения. После этого платформа поднимается на высоту еще одного слоя и процесс повторяется.

SLA-принтер на примере Formlabs Form 2

SLA дает более гладкие поверхности, по сравнению не только с FDM, но и с DLP, о которой рассказываем далее.

Так получается потому, что DLP проецирует слои картинкой из пикселей, а луч лазера в SLA движется непрерывно, что дает ровный, не пикселизованный слой.

DLP в тех же целях использует проектор, а LED DLP — ЖК-дисплей с ультрафиолетовой подсветкой. В этих конструкциях свет проецируется на смолу по всей площади слоя одновременно, что дает преимущество в скорости, когда необходима печать крупных объектов с заполнением в 100% — полная засветка слоя происходит быстрее, чем в SLA.

Но при печати мелких или пустотелых объектов SLA быстрее, так как интенсивность засветки лазерным лучом, а значит и скорость полимеризации, выше.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий